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We show that introducing periodic planar fronts with long excitation duration can lead to spiral attenuation.
The attenuation occurs periodically over cycles of several planar fronts, forming a variety of complex spa-
tiotemporal patterns. We find that these attenuation patterns occur only at specific phases of the descending
fronts relative to the rotational phase of the spiral. These patterns fall into two general classes, each defined by
a specific expression for the number of attenuated spirals per cycle of planar fronts, and represented by a
structured diagram in parameter space. The spiral attenuation patterns we observe remain stable in time and do
not change during the evolution of the system.
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Spiral waves underlie mechanisms related to a wide spec-
trum of phenomena, ranging from spatially extended chemi-
cal reactions to fatal cardiac arrythmias �1–7�. Different ap-
proaches to prevent spiral breakup have been proposed
�8–12�. Here, we focus on the attenuation of a single stable
spiral wave. It has been shown that pulses with frequency
higher than the spiral frequency can eliminate spiral waves
by forcing them to drift off the medium �13,14�, since the
highest-frequency domain pervades the medium �15–19�. We
show that it is possible to attenuate stable spiral waves by
planar wave fronts with period longer than the rotational
period of the spiral, and we address the problem of how to
control spiral attenuation in excitable media. We find that,
when the fronts have long excitation duration, and are deliv-
ered at a specific phase relative to the rotational phase of the
spiral, the spiral-front interaction is characterized by periodic
patterns of spiral attenuation, which remain stable in time,
and are observed for a broad range of physiologically mean-
ingful parameter values.

We perform numerical simulations on a two-dimensional
�2D� square lattice by considering the interactions between
the cells in the lattice based on physiologically motivated
rules, representing the excitation dynamics of myocardial
cells. In the model, the transmembrane potential of a myo-
cardial cell represents the state of excitation of that cell. We
model the state of the cell in position �i , j� in the lattice by an
integer number Eij as follows. �i� Resting (equilibrium) state:
This state is represented in our model by Eij =0, which cor-
responds to the experimentally observed transmembrane po-
tential �−90 mV. A cell remains in the resting state for an
unlimited time until a superthreshold perturbation occurs in
the medium, which brings the cell to the excited state. This
threshold for ventricular cells in guinea pigs was experimen-
tally found to be �4–8 V/cm �20�, and is represented in our
model by the parameter Trest. �ii� Excited state: When a cell
enters the excited state, it takes a value in the interval Emin
�Eij �Emax, where Emin�1. For an excited cell, in every
time step �, Eij decreases by 1. Thus, in our simulations Eij
not only represents the transmembrane potential but also has
the meaning of excitation duration, where at the beginning of
the excitation the lowest excitation level a cell can assume is

Emin, corresponding to the shortest possible action potential
duration �APD�, while the highest excitation level is Emax,
which corresponds to the longest APD. At the end of the
excitation period, Eij =1 before the cell becomes absolute
refractory. �iii� Absolute refractory state: When a cell enters
this state, Eij falls to −Ra−Rr, where Ra is the duration of the
absolute refractory state when a cell cannot be excited. For
an absolutely refractory cell, in every time step �, Eij in-
creases by 1. After Ra time steps the cell becomes relatively
refractory �at Eij =−Rr� before it reaches the resting state. �iv�
Relative refractory state: This state is represented by −Rr
�Eij �−1, where Rr is the duration of the relative refractory
state. A cell in this state can be excited with an excitation
threshold experimentally observed to decrease in time as the
cell approaches the resting state �21�. This threshold remains
higher than the threshold of cells in the resting state �21�, and
in our model, it decreases linearly in time from the value
Trest, when Eij =−Rr, to the value Tref in the resting state. For
every time step � in which a relatively refractory cell does
not become excited, Eij is increased by 1, until the cell
reaches the resting state Eij =0.

We define the excitation stimulus received by a cell in
position �i , j� from the neighboring cells as Sij =�k,lWkl�kl,
where k� �i−� , i+��, l� �j−� , j+��, and � defines the range
of interaction. Wkl is a rotationally symmetric interaction ker-
nel as defined in �22�, and �kl=1 if the cell in position �k , l�
is excited and �kl=0 otherwise. To preserve a proper relation
between the speed of propagation and the curvature of the
wave front, we set �=5. To account for the weaker effects of
more distant neighbors, we choose values of the kernel ele-
ments Wkl decreasing with increasing distance from the cen-
ter of the kernel �22�. In our simulations, a cell in position
�i , j� that is excitable at time t will become excited in the
next time step t+1 if it receives a stimulus Sij larger than the
excitation threshold of the cell. In this case, the new excited
state of the cell is given by Eij

t+1=Eij
t +Rr+Emin, so that a cell

at the beginning of the relative refractory state, with Eij
t =

−Rr, will reach an excitation level Eij
t+1=Emin. This is in ac-

cordance with the experimentally observed behavior of the
restitution curve �23�. To account for the ion leakage from
excited neighboring cells, we allow for an excitable cell to

PHYSICAL REVIEW E 75, 051923 �2007�

1539-3755/2007/75�5�/051923�5� ©2007 The American Physical Society051923-1

http://dx.doi.org/10.1103/PhysRevE.75.051923


reach the longest APD, Eij
t+1=Emax, if simultaneously �i� we

have a cell �k , l� included in the kernel that is in the state
Ekl

t =Emax, and �ii� the perturbation Sij is larger than the ex-
citation threshold.

The values of the parameters and the rules in our model
match well the excitation dynamics in the ventricular cells of
the guinea pig, traditionally used in experimental settings
and theoretical studies �23�. �a� The experimentally observed
excitable gap �the time between the end of the absolute re-
fractory period and the next excitation� is G=12±4 ms �23�,
which corresponds to one time step � in our simulations, so
we have �=12 ms. �b� Comparing the experimental propaga-
tion speed of v�75 cm/s �23� with the wave propagation of
three lattice cells per time unit � in our model, we have that
our spatial unit is �=0.3 cm ��100 myocite cells�. �c� The
experimentally found refractory period Rexpt�Ra

expt+Rr
expt

�200 ms, and relative refractory period Rr
expt�120 ms �23�

are approximated in our simulation by the parameter values
R�Ra+Rr� �18,30� and Rr� �7,10�, in units of the time
step �. �d� The minimum and maximum APDs experimen-
tally observed are Emin

expt�40 ms and Emax
expt�160 ms �23�,

which correspond to our parameters Emin� �2,4� and Emax

� �10,20�, in units of the time step �. �e� The prolongation of
the APD due to ion leakage has been physiologically esti-
mated as ��APD�expt�D�APD��xx�APD�, where D
�1 cm2/s is a diffusion constant. Since typically APD
��Emax

expt+Emin
expt� /2 and �xx�APD���Emax

expt−Emin
expt� /�2, we find

��APD�expt�130 ms which compares to the maximum pro-
longation in our model ��APD�model=Emax−Emin� �6,18� in
units of �. The shape of the model restitution curve mimics
the experimental data �23� �see Fig. 1�. Thus, our model is
based on experimentally relevant parameter values. Table I
gives all the model parameters and the values used in our
simulations.

We generate the spiral according to a standard procedure
�24�. When the spiral reaches a stable rotation �after 300 time
steps �, i.e., �15 spiral rotations�, we introduce planar fronts
with a period T starting from the edge of the lattice, each
generated as a single line of excited cells with maximum
APD, E1j =Emax, for j=1, . . . ,N. We release the first front at
time T0 �in units of �� after the stabilization period of the
spiral. The width of the front is proportional to the parameter

Emax and to the speed of propagation, which depends on the
excitation thresholds Trest and Tref. Under these conditions,
the position of the spiral tip remains within a very small area
��30 cells� and the observed patterns of spiral attenuation
are not the result of spiral drift. To avoid effects of the lattice
edge on the dynamics of wave propagation, and to account
for experimental settings �25� we introduce no-flux boundary
conditions. To track if the spiral is attenuated, we follow the
time evolution of every individual cell in the lattice. To sur-
vey the system, we also measure the total number of excited
cells in the lattice as a function of time.

We find that the interaction between the fronts and the
spiral leads to complex patterns where, after several passing
fronts, the spiral is attenuated �Fig. 2�. These patterns repeat
in time and remain stable for a broad range of parameter
values �Fig. 4�. Further, we find that all different patterns fall
into two general classes: �i� Class I, where there is one spiral
attenuation within a cycle of several passing fronts �Figs.
2�a�–2�c��, and �ii� Class II, where there are two nonconsecu-
tive spiral attenuations within a cycle of several passing
fronts �Figs. 2�d�–2�f��. Repeating our simulations for N
�N and N�2N lattices with N=60,80,100, . . . ,200, we
find identical dynamics with the same periodic patterns of
spiral attenuation.

In our simulations the APD of a cell that becomes excited
is Eij

t+1=Eij
t +Rr+Emin. Since the excitable gap in experimen-

tal settings is G�12 ms �23�, which corresponds to one time
step � in our simulations, a cell in the relative refractory state
Eij

t =−Rr is excited within a single time step to Eij
t+1=Emin.

Thus, the APD of a cell in the isolated spiral is always Emin.
Therefore, the restitution curve has a positive constant slope
during the relative refractory period, followed by a plateau
during the resting state �Fig. 1�. The patterns of spiral attenu-
ation we present in Fig. 2 are a result of a complex nonlinear
interaction between the spiral and the descending fronts.
Without the fronts, the rotational period of the spiral is uni-

TABLE I. Parameter values used in our simulations. R, refrac-
tory period; Rr, relative refractory period; Emax, maximum APD;
Emin, minimum APD; Tref, excitation threshold at the beginning of
the relative refractory period; Trest, excitation threshold in the rest-
ing state. R, Ra, Emax, and Emin are given in terms of the time unit �,
while the excitation threshold is given in arbitrary units.

Parameter Value

R 18–30

Rr 7–10

Emax 10–20

Emin 2–4

Tref 48

Trest 20
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FIG. 1. Model restitution curve. The action potential duration
�APD� is the duration of the excited plus absolute refractory states
and is plotted versus the diastolic interval �DI�, i.e., the time since
the end of the last action potential to the next excitation event. In
this plot, Emin=2, Emax=10, Ra=10, and Rr=8. The positive slope
region is the relative refractory state, and the flat region is the
resting state.
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form in both space and time, i.e., the excitation of every cell
in the lattice has a period equal to the rotational period of the
spiral. The period of the spiral is defined as the sum of the
duration of all states a cell undergoes during a single spiral
rotation, Tsp

− =Emin+Ra+G. In the presence of fronts, where
the excited cells have maximum APD given by Eij =Emax,
after a collision of a front with the spiral, a thin layer of
maximum APD excitations propagates from the front along
the advancing contour of the spiral �as shown in Fig. 3,

frames 2–4�. When these excitations reach the tip of the spi-
ral before the next spiral rotation, the period of the spiral
increases to Tsp

+ =Emax+Ra+G, which is also the period of the
cells with maximum APD. In this case, the spiral survives
and we observe a peak in the total number of excited cells in
the lattice �Fig. 2�. When the layer of cells with maximum
APD excitations, which propagates from the front to the spi-
ral, does not reach the tip of the spiral before the next spiral
rotation �i.e., it does not cover the entire contour of the spi-
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FIG. 2. Time evolution of the total number of excited cells on a square lattice of size N=100, showing the two classes of spiral
attenuation patterns. Absent and reduced peaks correspond to attenuation of the spiral. For Class I �n :n−1� patterns, within a cycle of n
fronts we have n−1 consecutive spiral rotations followed by one spiral attenuation: �a� pattern 2:1—out of the collision of the spiral with two
consecutive fronts there is first a spiral attenuation �denoted by B� followed by one surviving spiral �denoted by C�; �b� pattern 3:2—for each
cycle of three consecutive fronts there is first a spiral attenuation �B� followed by two surviving spirals �C and D�; �c� pattern 4:3—for each
cycle of four consecutive fronts there is a spiral attenuation �B� and three surviving spirals �C, D, and E�. The Class I patterns in �a�, �b�, and
�c� are obtained for the parameter values Ra=16, Rr=8, Emin=2, Emax=17,15,13, T0=73,39,64, respectively. For Class II �2n+1:2n−1�
patterns, within a cycle of 2n+1 fronts there are 2n−1 spiral rotations and two spiral attenuations: �d� pattern 3:1—for each cycle of three
fronts there are two spiral attenuations �B and D� and one surviving spiral �C�; �e� pattern 5:3—for each five fronts there are two spiral
attenuations �B and E� and three surviving spirals �C, D, and F�; �f� pattern 7:5—for each seven fronts we have two attenuations �B and F�
and five surviving spirals �C, D, E, G, and H�. The Class II patterns in �d�, �e�, and �f� are obtained for the parameter values Ra

=15,16,17, Rr=8, Emin=2, Emax=17,16,15, T0=65,70,70, respectively. In all panels, the instant in which a spiral attenuation is initiated is
denoted by A, and the beginning of the next cycle is denoted by B�. We choose Trest=20 and Tref =48 to maintain the movement of the spiral
tip in our simulations in an area of �30 cells, in agreement with experimental observations �23�.

FIG. 3. �Color online� Color-coded represen-
tation of the time evolution for the Class I 4:3
pattern obtained for the same parameter values as
in Fig. 2�c�. Snapshots represent the state of the
lattice at intervals of five time steps �. Snapshots
1, 7, and 12 correspond to D, E, and A in Fig.
2�c�. In the first snapshot, the central region is
refractory, with a planar front being introduced
from below, while the upper part of the frame is
covered by the spiral. Absolute refractory cells
are in red, relative refractory cells in orange and
yellow, and excited cells in shades of blue and
violet in the online version.
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ral�, the period of the spiral remains Tsp
− . In this case, the

cells at the tip of the spiral continue to have short APD given
by Eij =Emin �Fig. 3, frame 11�. Due to the short APD, the
spiral cannot propagate through the absolutely refractory ar-
eas left by the layer of cells with long APD �given by Eij
=Emax� formed between the front and the spiral, and the spi-
ral is attenuated �Fig. 3, frame 12�. This spiral attenuation
corresponds to a reduced, or absent, peak in the total number
of excited cells �Fig. 2�. In our simulations, T=Tsp

+ +2. Thus,
the spiral attenuation we observe �Figs. 1 and 2� is achieved
for planar fronts with a period lower than the period of the
spiral.

The patterns we show in Figs. 2 and 3 cannot be matched
by a linear superposition of the number of excited cells in the
isolated spiral and the isolated fronts. Such linear superposi-
tion exhibits periodic pulses with a much higher number of
excited cells and cannot account for the missing peaks asso-
ciated with spiral attenuation. The number of excited cells
during spiral attenuation �frame 12 in Fig. 3� is greatly de-
creased compared to that of the spiral alone �frame 6 in Fig.
3�.

For Class I �n :n−1� patterns, we observe that, within a
cycle of n fronts, we have n−1 slow spiral rotations with
period Tsp

+ , followed by two fast rotations with period Tsp
− :

nT = �n − 1�Tsp
+ + 2Tsp

− , class I, �1�

where the two fast rotations correspond to a single episode of
spiral attenuation. Solving for n in Eq. �1�, we obtain

n =
4Tsp

− − 2Tsp
+

2�T − Tsp
+ �

=
1

2
�2Emin − Emax + Ra + G� . �2�

For Class II �2n+1:2n−1� patterns, we observe that,
within a cycle of 2n+1 fronts, we have 2n−1 slow spiral

rotations, with period Tsp
+ , and four fast rotations, with period

Tsp
− :

�2n + 1�T = �2n − 1�Tsp
+ + 4Tsp

− , class II, �3�

where the four fast rotations correspond to two separate non-
consecutive episodes of spiral attenuation. Solving for n in
Eq. �3�, we obtain

n =
4Tsp

− − Tsp
+ − T

2�T − Tsp
+ �

=
1

2
�2Emin − Emax + Ra + G − 1� . �4�

Based on the choice of parameter values for the system, the
above expressions allow us to predict �i� the specific attenu-
ation pattern, and �ii� the class to which a given pattern be-
longs. Parameter values for which we do not obtain integer n
in either Eq. �2� or Eq. �4� cannot lead to spiral attenuation
patterns. Thus, we can control the dynamical behavior of the
system in generating desired patterns of spiral attenuation.

Our simulations of up to 105 time steps � �corresponding
to �1500 s in experimental settings� show no change in the
dynamics, which indicates that the spiral attenuation patterns
remain stable in time. Further, we find that both Class I and
Class II patterns can be obtained for a broad range of param-
eter values showing a robust effect of spiral attenuation. Spe-
cifically, we observe a particular structure in parameter space
where individual patterns are organized along parallel
straight lines, with every even line corresponding to a Class
I pattern and every odd line corresponding to a Class II pat-
tern �Fig. 4�a��. This regular structure in parameter space is
also predicted by Eqs. �2� and �4�. In the upper left corner of
the parameter diagram, for increasing values of Ra and de-
creasing values of Emax, since we have one attenuation per
cycle of n fronts for Class I patterns, and two attenuations
per cycle for 2n+1 fronts for Class II, as expected, an at-
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FIG. 4. �Color online� �a� Pattern diagram in parameter space Ra versus Emax, for a square lattice of N=100 and fixed parameter values
Rr=8 and Emin=2. We observe attenuation patterns for a broad range of parameter values where each pattern can be found along a single
straight line, in accordance with Eqs. �2� and �4�. Patterns of Class I and Class II alternate in a series of parallel lines, where n increases with
increasing Ra. Empty symbols represent Class I patterns, while solid symbols represent Class II patterns. �b� Dependence of the attenuation
patterns on the relative phase between the first released front and the spiral. Presented are only the patterns 2:1 �Class I� and 5:3 �Class II�
for two sets of parameter values Emax and Ra, with the same symbols as in �a�. For each set of parameter values, the patterns in �a� can appear
only for specific relative phases, indicating that the phase in which the front hits the spiral is crucial to achieve spiral attenuation.
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tenuation becomes less frequent for increasing n. In the up-
per right �large Ra and Emax� and lower left �small Ra and
Emax� corners of the diagram, we find alternating patterns in a
broad range of parameter values extending beyond the physi-
ologically meaningful region �not shown on the diagram in
Fig. 4�a��. Finally, in the lower right corner of the diagram
�small Ra and large Emax� we do not observe patterns. This is
in agreement with Eqs. �2� and �4�, which do not allow n
	2 for Class I �a cycle of at least two fronts is needed to
have one attenuation within the cycle�, and n	1 for Class II
�a cycle of at least three fronts is needed to have two attenu-
ations within the cycle�.

Finally, we investigate how the front-spiral interaction de-
pends on the relative phase between the spiral and the fronts.
To answer this question, we perform several tests by releas-
ing the first front at a time T0 after the stabilization period of
the spiral, followed by a train of fronts with period T. We
repeat the simulations for every value of T0� �0,T�, for ev-
ery point in the parameter space shown in Fig. 4�a�. Surpris-
ingly, we find that the patterns we observe in the parameter
diagram of Fig. 4 occur only for specific values of T0. For

example, the Class I 2:1 pattern generated for Emax=15 and
Ra=14 occurs only for phase 2
 /4, corresponding to T0

=T /4, while the same pattern, for Emax=18 and Ra=17, oc-
curs for several values of T0 �Fig. 4�b��. Thus, the observed
dynamical patterns of spiral attenuation shown in Fig. 2 de-
pend not only on the parameter values, but also on the spe-
cific values of the relative phase between the spiral wave and
the first released front. These findings indicate the presence
of particular “vulnerable” phases during the spiral rotation
when planar fronts can lead to spiral attenuation patterns.
While our model is relatively simple and takes into account
only the basic elements of the excitable dynamics, it is also
very general, and, therefore, the results we obtain could be of
relevance to single spiral cardiac arrhythmias such as mono-
morphic ventricular tachycardia.

Miguel A. de la Casa and Javier de la Rubia acknowledge
partial support by the Ministerio de Educación y Ciencia
�Spain�, Project No. FIS2005–01729, and Plamen Ch. Ivanov
acknowledges support from NIH Grant No. 2R01
HL071972.

�1� A. T. Winfree, Science 175, 634 �1972�.
�2� F. Siegert and C. J. Weijer, J. Cell. Sci. 93, 325 �1989�.
�3� S. Jakubith, H. H. Rutermund, W. Engel, A. von Overtezen,

and G. Ertl, Phys. Rev. Lett. 65, 3013 �1990�.
�4� J. M. Davidenko et al., Nature �London� 355, 349 �1992�.
�5� R. A. Gray et al., Science 270, 1222 �1995�.
�6� F. X. Witkowski et al., Nature �London� 392, 78 �1998�.
�7� H. M. Hastings et al., Proc. Natl. Acad. Sci. U.S.A. 93, 10495

�1996�.
�8� V. Petrov et al., Nature �London� 361, 240 �1993�.
�9� V. S. Zykov, A. S. Mikhailov and S. C. Muller, Phys. Rev.

Lett. 78, 3398 �1997�.
�10� W. L. Ditto et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 10,

593 �2000�.
�11� S. Sinha, A. Pande, and R. Pandit, Phys. Rev. Lett. 86, 3678

�2001�.
�12� M. Woltering and M. Markus, Phys. Lett. A 297, 363 �2002�.
�13� H. Sakaguchi and Y. Kido, Phys. Rev. E 71, 052901 �2005�.

�14� A. V. Panfilov, S. C. Muller, V. S. Zykov, and J. P. Keener,
Phys. Rev. E 61, 4644 �2000�.

�15� A. N. Zaikin and A. M. Zhabotinsky, Nature �London� 225,
535 �1970�.

�16� A. T. Stamp et al., Chaos 12, 931 �2002�.
�17� I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett. 76,

1170 �1996�.
�18� K. J. Lee, Phys. Rev. Lett. 79, 2907 �1997�.
�19� F. Xie, Z. Qu, J. Weiss, and A. Gartinkel, Phys. Rev. E 59,

2203 �1999�.
�20� V. Sharma et al., Biophys. J. 88, 3038 �2005�.
�21� Essential Medical Physiology, edited by L. R. Johnson

�Lippincott-Raven, Philadelphia, 1998�.
�22� V. G. Fast et al., Phys. Lett. A 151, 157 �1990�.
�23� S. D. Girouard et al., Circulation 93, 603 �1996�.
�24� V. N. Biktashev and A. V. Holden, Chaos 8, 48 �1998�.
�25� J. M. Starobin and C. F. Starmer, Phys. Rev. E 54, 430 �1996�.

PATTERNS OF PHASE-DEPENDENT SPIRAL WAVE… PHYSICAL REVIEW E 75, 051923 �2007�

051923-5


